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Abstract. The method is to use a computer to find a function for the process that always has
negative expectation by considering all relevant configurations of 0’s and 1’s at the boundary of
a finite process in one dimension. It is shown that a branching annihilating random walk will
die out if the diffusion parameterρ is greater than 0.176. The method may also be applied to
attractive processes, and is used for the contact process in one dimension obtaining the same
values as Ziezold and Grillenberger (1988) for up to 10 places in from the boundaries.

1. Introduction

This paper is concerned with the spread of finite sets of particles situated on a lattice.
Specifically we shall suppose that each position on the lattice of integers,Z, is either
occupied (1) or unoccupied (0) so that the state space is{0, 1}Z. (Occupied and unoccupied
can also be thought of as spin-up and spin-down.) Particles interact with their neighbours
so that the set of occupied sites of the lattice evolves in time. The rates at which these
interactions occur will be the parameters of the process. Certain types of processes exhibit
critical behaviour, that is, for some values of the parameters, finite sets of particles tend to
grow and for other values they die out almost surely (a.s.). The purpose of this paper is to
present a method of getting bounds on the critical values of the parameters.

The contact process has been one of the most widely studied of all interacting particle
systems. Particles die at rate 1, so that independently of all other sites a 1 may flip to a
0, or particles may spread at rateb (oftenλ), so that any pair of adjacent sites of the form
01 may flip to 11 independently of all other possible interactions. It can be considered as a
model of an infection, with dying equivalent to recovery from the disease. These systems
have a critical behaviour that is like that in thermal equilibrium although they start far from
equilibrium. Substantial work has been done finding bounds on the critical value at which
a phase transition occurs. The work is summarized in Konno (1994), ch 3. The best lower
bound forb given there is 1.539 (Ziezold and Grillenberger 1988), and the best upper bound
1.942 (from Liggett 1994).

The technique given in this paper is to produce a function that gives a ‘score’ to each
finite configuration. As the process evolves, depending on the parameters, this score will
either tend to decrease or increase, and this will correspond to the process dying out or
spreading to∞. (These scores will be used to define a supermartingale for the process
where possible. Scores may also be thought of as Lyapunov functions.)

The scores will have three components, the distance from the leftmost to the rightmost
particle plus subsidiary scores given to theirm-configurations, that is the 2m possible sets of

0305-4470/98/418323+09$19.50c© 1998 IOP Publishing Ltd 8323



8324 A Sudbury

sitesm places in from those end particles (m to be chosen). In the contact process, if them
sites next to an end particle are all occupied, it will be easier for the process to spread than
if they are unoccupied. The score when them places are occupied will be greater than that
when they are not. This is because the contact process is an ‘attractive’ interacting particle
system (IPS), that is, the more particles, the more likely the process is to spread. However,
when the IPS is not attractive because a particle may be annihilated by a neighbour, it is not
at all clear which is the most advantageousm-configuration. How to find it is part of the
purpose of this paper, and once it is found, a bound on the critical values of the parameters
follows.

The branching annihilating random walk (BARW) was introduced by Bramson and Gray
(1985) after hearing a talk given by S Ulam. They imagined that each particle independently
performed a random walk on the integer latticeZ at rateρ and also placed offspring on
a neighbouring site at rate 1. When a particle landed on a site already occupied, the two
particles annihilated each other. They showed that for sufficiently smallρ the BARW could
survive and that for sufficiently largeρ, it would die out. This paper demonstrates that when
ρ > 0.176 the process will die. This value is obtained by looking at the configurations eight
places in from the outer 1’s of a finite configuration. The bound derived by simply looking
1 place in from the end is 1/3, and by increasing the number of places from 1 to 8, the
value is lowered and approaches the value of 0.103 obtained by Inui (1993) by simulation.
It should be noted that it has not been proved that a critical value ofρ exists for the BARW
although it would seem reasonable that it should do.

In this paper the BARW is only considered onZ, and we speed it up by rate 2. In
the notation of Sudbury (1997b) the BARW is defined by the possible interactions between
pairs of neighbouring sites: birth (a particle adds a particle to an empty neighbouring site,
10 → 11) at rateb = 1; exclusion (a particle jumps to an empty site, 10→ 01) at
rate e = ρ; annihilation (either one of two neighbouring particles jumps onto the other
and they annihilate, 11→ 00) at ratea = 2ρ; and coalescence (one particle places an
offspring on an occupied neighbouring site annihilating the particle there, 11→ 10) at rate
c = 1.

There is one other flip we shall use later: death (a particle with an unoccupied
neighbouring site dies, 10→ 00) at rated. (Note, in this paper we do not consider
flips from the state 00.)

Because the method is simpler to explain for the contact process, we treat this case
before that of the BARW.

2. The contact process in one dimension

We consider a contact process with initial configuration finite. We aim to find bounds on
the leftwards spread of the process by looking at the possible changes that can occur to
the configurationm places to the right of the leftmost occupied site. There are 2m possible
states which we shall designate by the integers 0, 1, . . . ,2m − 1 for which they are the
binary expansions. For example, withm = 3, the left-hand end of the form. . .0110110. . .
hasm-configuration 101, the binary expansion of 5.

The m-configuration is not a closed system because its evolution depends on the
configuration to its right. Since we are seeking lower bounds to the critical value we shall
be looking for the configurations to the right which are most advantageous for leftwards
spread. We may imagine a kind of Maxwell’s demon who sits at the right end of the
m-configuration and, when them-configuration changes, instantaneously adjusts the right
configuration.
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Let us first see what possible choices of right configuration the demon can make. We
shall illustrate this with the casem = 2 and statei = 1 corresponding to the left-hand
situation . . .0101x1x2 . . . . x1, x2, . . . is the right configuration. At rateb a 1 is put to the
left of the leftmost 1 so that the new left end is. . .01101x1x2 . . . . The m-configuration
jumps to 10(i = 2) and the process spreads by 1. At rate 2b a 1 is put between the 1’s.
This time them-configuration jumps to 11 (i = 3), but the process does not spread. Or the 1
dies at rate 1, in which case the process contracts by 2 and the nextm-configuration isx1x2.
Thus when them-configuration jumps to the state 1, the demon has four possible choices for
the right configuration which it will instantaneously create, and this choice determines the
rates at which them-configuration evolves stochastically. Ifj = 2x1+x2, then the rates out
of the state 1 areq12 = b, q13 = 2b, q1j = 1 wherej may of course be 2 or 3, in which case
the rate 1 is added to the other rates. Once a demon has decided which right configuration to
choose for each state, all the ratesqij , i, j = 0, 2m−1, are determined and a Markov process
with state space the set ofm-configurations is defined. Since there are several possibilities
for the choice of right configuration for eachm-configuration, the overall number of possible
Q-matrices and their corresponding Markov processes is large. For the casem = 2 it can
be shown to be 128. The purpose of this paper is to give a method for finding the particular
set of right configurations most favourable for leftwards spread, or to put it another way,
the most favourableQ-matrix. (Although this is not needed here, theQ-matrix determines
the forward equation for the probabilities and equals−H , the negative of the Hamiltonian.)

A particular problem is caused by the statei = 0 which, for the casem = 2, would
mean the left-hand end was. . .0100x1x2 . . . . The left-hand 1 dies at rate 1 and when it does
so, the left-hand end retreats to the next 1 to the right, but this may be an arbitrarily large
number of spaces away. We can put 3 as a lower bound to the number of spaces contracted
and this is obviously the most advantageous value. It is because we cannot bound above the
size of the contraction that the method presented in this paper only gives one-sided bounds.

If the process is finite and has leftmost and rightmost 1’s in positions−l and r,
respectively, and the leftm-configuration is in statei and the right in statej , then the
total score for the process isL = l+r+Si+Sj where the set of ‘scores’{Si} corresponding
to statesi are to be determined. Given a value ofb, if we can find a set of valuesSi for
which the rate of change of the expectation ofL is negative in every statei, thenb will be
below the critical value for the contact process.

In general in the analysis of IPS, for each statei, we consider all possible relevant
right configurations and their associatedqij and determine which combination of right
configurations is the ‘most advantageous’. However, the contact process is well known to
be ‘attractive’, and so it is not surprising that the correct strategy for the demon is to always
make the right configuration ‘all 1’s’. When the leftmost particle movesk places to the
left the change in score isk. Because we are only considering the most advantageous right
configurations, when the left-hand 1 dies in the statei = 0, we assume the left-hand 1
movesm+ 1 places to the right contributing−(m+ 1) to the change inL.

We write the rate of change of the expected leftmost position when in statei asai , then
with a set of transition ratesqij determined by a particular set of right configurations, the
rate of change of the expected score when in statei is

ai +
∑
j 6=i

qij (Sj − Si).

Our general task is to find{Si} s.t. for a givenb, these expressions are negative for all
possible sets of transition ratesqij , but with the contact process this procedure is much
simplified by knowing the most advantageous right configurations already. We putS0 = 0.
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Given any particular 2m × 2m Q-matrix Q, Sudbury (1997a) defined an associated
2m − 1× 2m − 1 matrixQ∗ with

q∗ij = qij i, j 6= 0 q∗ii = −
∑
j 6=i

qij .

The required system of inequalities (reversed in Sudbury (1997a)) may be written∑
q0j Sj + a0 6 0 Q∗S 6 −a (1)

whereS = (S1, . . . , Sn)
T.

The paper showed(Q∗)−1 was negative, so that (1) impliesS > −(Q∗)−1a. Since
q0j > 0 for all j , the first inequality in (1) will be satisfied most readily by the smallest
possibleS. Thus it is sufficient to calculateS = −(Q∗)−1a and check the sign of∑
q0j Sj +a0. If this is negative,S is called theminimum scorefor the particularQ-matrix.
A computer program was therefore written which would calculate theQ-matrix for any

given input of pairwise flip rates and given set of right configurations for each state of the
IPS. The chief programming difficulties arise when the leftmost 1 moves to the right. If it
movesk 6 m spaces, then the lastm − k places of the previousm-configuration become
the firstm − k, and there are 2k possible ways in which the newm-configuration can be
formed. k > m only occurs in the contact process wheni = 0 and the leftmost 1 dies.
There are then 2m possible newm-configurations.

As mentioned above, the contact process is an attractive model and thus the search for
the most advantageous set of right configurations is simple. DefineQ1 to be theQ-matrix
when them+ 1 positions to the right of them-configuration are always 1’s. LetQ be any
otherQ-matrix. Given any two statesi, j we write i ⊃ j if the set of 1’s in the binary
expansion ofi contains the set of 1’s in that ofj . Then we have the following lemma.

Lemma 1.If the set{Si} has the property thatSi > Sj when i ⊃ j , then∑
Q1
ij (Sj − Si) >

∑
Qij (Sj − Si)

whereQ is any other possibleQ-matrix.

Proof. There are two ways in which theQ-matrices can differ. First,x1 6= 1 for some state
i in the definition ofQ. If i has last digit 0, thenx1 = 1 gives a contribution ofb to the
transition fromi to i+1, and this gives a non-negative contribution to

∑
Q1
ij (Sj −Si) since

in that casei + 1 ⊃ i. The other way occurs when the leftmost 1 ini dies andi jumps to
a statej which may be partly made up of the rightmost digits ofi or may not. In either
case, ifj is the statei jumps to in theQ-situation and if it isj1 in theQ1-situation, then
j1 ⊃ j andSj1 > Sj . �

The procedure for finding a suitable set{Si} is thus very simple.
(1) Select a value ofb.
(2) Calculate the transition matrixQ1 and associated matrix(Q1)∗.
(3) Solve the equationS = −(Q∗)−1a with Q = Q1.
(4) Find the sign of

∑
q0j Sj + a0.

(5) If the sign is negative, try a larger value ofb, if positive, try a smaller value until
the changepoint is found.

(6) With the {Si} found for theb just below the changepoint, testSi > Sj when i ⊃ j
for all pairs i, j .
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If the test is satisfied, then the left-hand contribution to the rate of change of the
expectation ofL is negative whatever the configuration to the right of them-configuration.
Because of the obvious symmetry with the right-hand contribution, it would then follow
thatL is a supermartingale. Since it is well known that the contact process must either die
out or spread to infinity, it is obvious that the process would then die out.

The procedure was carried out for the casesm = 2, 3, . . . ,10, when it had to be stopped
as the VAX computer being used would not handle arrays of size 2048× 2048. TheSi at
the changepoint valuesbm all satisfied the conditions of lemma 1 and thus thebm are all
lower bounds tobc, the critical value for the one-dimensional contact process.

m bm

2 1.279
3 1.342
4 1.387
5 1.420
6 1.445
7 1.465
8 1.481
9 1.495

10 1.506

These numbers are in agreement with those of Ziezold and Grillenberger (1988).
Although their method is different, it is in fact equivalent to the method used here. They
considered the casesm = 2, 3, . . . ,14 up to 20 decimal places, finally achieving a lower
bound of 1.538 848. . . and so on.

3. The branching annihilating random walk

In this section we introduce the idea that it may be more advantageous to derive bounds on
critical values of a process by considering a dual of that process. Duals have been widely
used in the theory of IPS and there are extensive discussions in Liggett (1985) and Sudbury
and Lloyd (1995). The only part of the theory needed here is that a positive probability of
survival for an IPS implies a positive probability of survival for all of its duals.

Sudbury and Lloyd (1995) gave an algebraic formula which allowed the duals of any
IPS with pairwise interactions to be written down. This formula was much simplified in
Sudbury (1997b). An IPS given by the ratesa, b, c, d, e defined in the introduction of this
paper is dual with duality parameterx to the IPS with rates given by

a′ = a + 2xy b′ = b − y c′ = c − (1+ x)y d ′ = d − y e′ = e + y
wherey = (d − a − c − bx)/(1− x). The primed rates given above only define an IPS
when all rates are>0. Puttingx = −1 in the BARW givesy = −ρ, defining a dual process
with b′ = 1+ ρ, c′ = 1, d ′ = ρ. These rates are a combination of those of an annihilating
branching process (ABP,b = c = 1) (see Sudbury 1990, Bramsonet al 1991) and a voter
model (VM) rateρ (b = d = ρ), so we shall designate it by ABP/VM.x = −1 corresponds
to an annihilating duality which could be derived by graphical means.

Sudbury (1997b), theorem 4, shows that if the probability an IPS survives from a finite
initial set is positive, then the probability of survival will be positive for any dual. Further,
it is shown in theorem 1 that any IPS withb > 0 is self-dual with parametery = 0 or
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xself = (d − a − c)/b. Thus, the BARW is self-dual with parameter−(1+ 2ρ) and the
ABP/VM has self-duality parameter(ρ−1)/(1+ρ). It follows indirectly from Sudbury and
Lloyd (1997), theorem 11 and directly from Sudbury (1997b), theorem 3, that the BARW
is a 1/(1+ ρ)-thinning of the ABP/VM in the sense that if the initial configuration of a
BARW is a 1/(1+ρ)-thinning of the initial configuration of the ABP/VM, this relationship
holds for all subsequent times. Since the chief inaccuracy in the method outlined for the
contact process was in the bound put on the number of spaces by which the process could
contract when the end 1 died, it is conjectured that the supermartingale method will be
more accurate if the IPS with a greater density of particles is used. We illustrate this by
comparing the values ofρ for which the ABP/VM dies out to those of the BARW.

There is an immediate pay-off in one dimension when we consider the casem = 1.
Suppose the left-hand end of the ABP/VM is 11. Then the left-hand 1 branches to the left
at rate 1+ ρ, but the left-hand 1 dies at rateρ and coalesces at rate 1, so in this situation
the rate of change of the expected position of the left-hand 1 is 0.

If the left-hand end is of the form 10 then, as before, the 1 branches to the left at rate
1+ ρ, but the 1 dies at rate 2ρ and moves at least two spaces to the right. Thus, the rate
of change of the expected position is61− 3ρ. Clearly, if ρ > 1/3 it is possible to create
a supermartingale for the ABP/VM. We therefore have the following lemma.

Lemma 2.Whenρ > 1/3 in one dimension, the BARW and the ABP/VM have extinction
probability 1 when the initial configuration is finite.

The argument when applied to the BARW is more complicated. Assuming a score of
0 when the left-hand end is in state. . .10. . . and−s when in the state. . .11. . . , the rates
of change of the expected changes in score are as follows: first assume the left-hand end
is 0100. . . then the rate of change is 1− 2s + (ρ − ρ). Then assume the left-hand end is
. . .111. . . . In this case the rate of change is 2ρ(−2+ s + s)+ ρ(1+ s)+ 1+ 1(−1+ 2s).
It is simple to check that for both expressions to be60, it is necessary thats = 1/2, ρ > 2,
confirming in this instance the conjecture that the ABP/VM is more effective to work with.

Because the model is non-attractive there is no obvious candidate for the values to the
right of them-configuration that will be most advantageous. It is clearly impossible to look at
all possibilities since they exceed 22m−1

, but fortunately a straightforward search procedure
locates the most advantageous set of configurations relatively rapidly. We consider the
BARW.

First, a random set of right configurations is generated. TheQ-matrix and the values
of a corresponding to this set are calculated by the computer program. PutS = −(Q∗)−1a.
Then, the special casei = 2m−1 is considered as this corresponds to. . .0110000. . . . It is
assumed that at rate 2ρ the leftmost pair of 1’s annihilate each other and the leftmost 1
movesm+1 places to the right. There are 2m possible right configurations, each defining the
m-configuration for the state 2m−1 to jump to. TheQ-matrix for each of these configurations
is calculated. It is only necessary to do this for theqij , i = 2m−1, as this is the only part of
the matrix that is being changed. For each of the 2m possibilities,

∑
qijSj+ai is calculated.

The right configuration giving the largest value is chosen and a newQ-matrix calculated
using that right configuration.

Keeping the same value ofS, the statei = 0 is considered. There are only two
possibilities here,x1 = 0, 1. The same procedure is carried out. For each of these
possibilities aQ-matrix is determined and the corresponding values of

∑
qijSj + ai for

i = 0. Whichever ofx1 = 0, 1 performs best is then chosen for the newQ-matrix (which,
of course, may be the same as at the end of the last round).
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We now go to the statei = 1 and repeat the process, and then similarly through all the
other states, returning to the beginning, when the cycle starts again with a calculation
of S = −(Q∗)−1a with the newQ. When a complete cycle ofi = 2m−1 and then
i = 0, . . . ,2m − 1 is performed without theQ-matrix being modified, the procedure is
ended. If the final value of

∑
q0j Sj + a0 is negative then a supermartingale for the process

has been discovered, as lemma 3 will show.
Perhaps unexpectedly, in all the examples tried, the above procedure did terminate,

although it has not been proved that it must. Furthermore, in every case the terminal value
of
∑
q0j Sj + a0 was the same, whatever initialQ-matrix had been randomly chosen.

In what follows it is convenient to describe the state 2m−1 as−1 when we are considering
the annihilation of the leftmost pair of 1’s, and as 2m−1 when we are considering the effect
of x1.

Lemma 3.Suppose that there exists aQ-matrix for the process with
∑
qijSj + ai 6 0 for

i = 0, . . . ,2m − 1. For each statei (including −1), theQ-matrix can be changed by a
different choice of right configuration. Suppose there areni such choices fori, and call the
changedQ-matricesQik with correspondingaik, k = 1, . . . , ni . (Note that for one of the
values ofk, Qik = Q, aik = a.) If (putting a−1 = a0)∑

j

qikij Sj + aiki 6
∑
j

qij Sj + ai (2)

for every i = −1, 0, . . . ,2m − 1, k = 1, . . . , ni then∑
qijSj + ai 6 0⇒

∑
q ′ij Sj + ai 6 0

for anyQ-matrixQ′ of the process.

Proof. Once the{Sj } are fixed, each inequality fori operates independently of the others.
�

Using the procedure outlined above, changepoint values for the BARW and the ABP/VM
were calculated form = 2, 3, 4, 5, 6, 7, 8. At m = 8 the Vax computer being used was
taking around 15 min to find the most advantageous right configurations for each value of
b. It would have taken some hours form = 9 and days form = 10, so it was decided to
stop atm = 8. The results confirm the conjectured better performance for the ABP/VM for
lower values ofm. The equivalence of the values ofρ is not strictly reached until the case
m = ∞.

m ρm (ABP/VM) ρm (BARW)

1 0.33 2.0
2 0.285 0.368
3 0.246 0.254
4 0.222 0.225
5 0.205 0.208
6 0.193 0.195
7 0.184 0.185
8 0.176 0.177

It still has not been proved that these values ofρ are bounds on the critical value of
the process, since supermartingales have only been found for specific values ofρ. It is,
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however, true that in every case tried the final value of
∑
q0j Sj + a0 did increase withρ.

This same problem was faced when finding critical values for the BABP (Sudbury 1997a),
but this time matters are simpler as it turns out that the supermartingale{Sj } found for the
ABP/VM with ρ = 0.176 is also a supermartingale forρ = 0.34. This was checked by
starting with the optimal set of right configurations found forρ = 0.176. These were then
used along withρ = 0.34 to create aQ-matrix. Then for eachi = −1, . . . ,2m−1, the set of
possibleQ-matricesQik were created and the expression

∑
qikij Sj +aiki calculated. In every

case this expression was found to be negative, demonstrating that the{Sj } also defined a
supermartingale forρ = 0.34. Since eachQ-matrix and eacha is a linear function ofρ,
theQ-matrix anda for values ofρ between 0.176 and 0.34 are linear combinations (with
positive coefficients) of theQ-matrices anda’s at 0.176 and 0.34. Thus,

∑
qikij Sj +aiki 6 0

for every possiblei, k, ρ with 0.1766 ρ 6 0.34. Combining this result with lemma 2 we
obtain the following.

Theorem.In one dimension the BARW dies out whenρ > 0.176.

4. The annihilating random walk with branching a = 2ρ, b = 1, e = ρ

This model is the BARW not allowing coalescence. Using the procedure outlined
for the BARW, changepoint values for the ARW with branching were calculated for
m = 3, 4, 5, 6, 7.

m ρm

3 0.39
4 0.35
5 0.33
6 0.31
7 0.30

It should be noted that, although in every case tried the final value of
∑
q0j Sj + a0 did

decrease withρ, it has not been proved that this is the case.ρm above is a value ofρ at
which the final value was positive, whereas it was negative forρm+0.01. Since coalescence
is not allowed in this model, it is to be expected that the ‘critical’ value ofρ should be
larger than for the BARW.
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